Cortical Bone Water Changes in Ovariectomized Rats During the Early Postoperative Period: Objective Evaluation Using Sweep Imaging With Fourier Transform

Tsuyoshi Sukenari, MD, Motoyuki Horii, MD, Kazuya Ikoma, MD, PhD, Masamitsu Kido, MD, PhD, Shigeki Hayashi, MD, Yusuke Hara, MD, Tetsuro Yamasaki, MD, Ken-ichi Matsuda, PhD, Mitsuhiro Kawata, MD, PhD, and Toshikazu Kubo, MD, PhD

Purpose: To evaluate the cortical bone signal-to-noise ratio (SNR) in ovariectomized (OVX) rats during the early postoperative period as a method to measure bone quality using the sweep imaging with Fourier transform (SWIFT) technique.

Materials and Methods: Twelve-week-old female Sprague–Dawley rats (n = 64) were divided into sham and OVX groups. Preoperative tetracycline was immediately administered subcutaneously to distinguish new cortical bone area, and tibial samples were collected at 2, 4, 8, and 12 weeks postoperatively. Magnetic resonance imaging (MRI) was performed using proton density-weighted imaging (PDWI) and SWIFT to obtain cross-sectional images of the tibial diaphysis. The cortical bone SNR was calculated. Bone histomorphometry was performed.

Results: Histomorphometry findings showed that the new bone area was significantly greater at 8 and 12 weeks postoperatively in the OVX group (P < 0.05) while the porosity area decreased gradually in both groups (P < 0.001). The difference of SNR receiving PDWI did not reach statistical significance (P = 0.057). The SWIFT technique showed that the SNR was significantly higher at 8 and 12 weeks postoperatively in the OVX group (P < 0.05) and was correlated with the new bone area (R² = 0.430).

Conclusion: The SWIFT findings suggest that the SWIFT technique may depict early changes in cortical bone quality.

Key Words: bone water; cortical bone; osteoporosis; ovariectomy; sweep imaging with Fourier transform

OSTEOPOROSIS is defined by decreased bone strength and increased fracture risk (1). Bone strength is reflected in bone density and quality. Bone quality is affected by bone architecture, turnover, accumulated damage, and mineralization (1). Postmenopausal osteoporosis is the most common form of osteoporosis. Ovariectomized rats are used generally in the research of postmenopausal osteoporotic models (2). The menopause-associated decrease in estrogen concentration increases the bone resorption rate. This ultimately leads to osteoporosis (3,4), increases risks of bone fracture and death (5), and deteriorates quality-of-life (QOL) (6).

Secondary osteoporosis caused by diabetes (7) and glucocorticoid therapy (8) also degrades bone quality by affecting collagen cross-linking (9); as a result, bone fractures can occur even in people with a high bone mineral density (BMD), highlighting the importance of assessing not only BMD, but also bone quality.

Cortical bone is also important to maintain bone strength (10). To assess cortical bone quality, cortical bone water is measured by magnetic resonance imaging (MRI) (11). Cortical bone consists of ~65% mineral, ~10% organic matrix, and ~25% water (12,13). Some bone water resides within the pore spaces, which include the lacunocanalicular system and blood vessels such as the Haversian canal and Volkmann canal (14–17). The remaining bone water binds to the matrix substrate and collagen, and binds tightly to crystalline components such as hydroxyapatite.

In recent years, ultrashort echo time (UTE) imaging (13) and sweep imaging with Fourier transform (SWIFT) (18,19) have been used to image tissues such as bone with an extremely short T₂ relaxation time. In the
SWIFT technique, the TE is set to nearly 0, and excitation and signal acquisition are performed at almost the same time; this enables signal detection and imaging of tissues with extremely short T_2 relaxation times (18). The SWIFT technique also enables detection of bound water with an extremely short T_2 relaxation time and may distinguish changes in cortical bone quality.

The purpose of this study was to evaluate the tibial cortical bone signal-to-noise ratio (SNR) in ovariectomized (OVX) rats during the early postoperative period as a method to measure bone quality by conducting MRI using the SWIFT technique.

MATERIALS AND METHODS

Animal Model

Twelve-week-old female Sprague–Dawley (SD) rats ($n = 64$) (Shimizu Laboratory Supplies, Kyoto, Japan) were studied. The rats were housed in our institution’s animal facility in accordance with the guidelines of the Guide for the Care and Use of Laboratory Animals published by the National Institutes of Health. The facility was maintained at a 23–24C room temperature on a 12-hour light/dark schedule, and the subjects had free access to food and water. The rats were randomized into sham or OVX experimental groups. This study was approved by our Institutional Review Board for animal experiments.

The sham operation and ovariectomy were performed under sterile conditions. All rats were anesthetized with 1.5% isoflurane. In both experimental groups, an abdominal incision was made and the ovaries were identified; the ovaries were removed from the OVX subjects but left intact in the sham subjects.

The animals were sacrificed using intraperitoneal sodium pentobarbital at 2, 4, 8, and 12 weeks postoperatively. The OVX rats had a higher body weight because of estrogen deficiency, compared to the sham rats, a finding that has been reported previously (20–22). Successful OVX was confirmed at necropsy because of estrogen deficiency, compared to the sham group. An abdominal incision was made and the ovaries were identified; the ovaries were removed from the OVX subjects but left intact in the sham subjects. The animals were sacrificed using intraperitoneal sodium pentobarbital at 2, 4, 8, and 12 weeks postoperatively. The OVX rats had a higher body weight because of estrogen deficiency, compared to the sham rats, a finding that has been reported previously (20–22). Successful OVX was confirmed at necropsy because of estrogen deficiency, compared to the sham group.

The tibias were fixed in 70% ethanol immediately after the sham or OVX operation and Osteometric (OVX) rats during the early postoperative period as a method to measure bone quality by conducting MRI using the SWIFT technique.

MRI

Imaging was performed on a small bore MRI unit (Varian MRI System 7.04T; Agilent Technologies, Palo Alto, CA) using a transmit/receive surface coil (3.6 cm diameter). The specimens were placed in a 1.5-cm-diameter cylindrical container and immersed in a fluorine-based inert liquid (Fluorinert FC-3283; Sumitomo 3M, Tokyo, Japan) to reduce potential imaging artifacts.

CT Analyses

The tibias were fixed in 70% ethanol immediately after performing the MRI. The surrounding soft tissues were detached and the tibial BMD was measured using dual-energy X-ray absorptiometry (DEXA) (DCS-600EX-R; Aloka, Tokyo, Japan).

µCT Analyses

The tibias were imaged using microcomputed tomography (µCT) (micro focus 2D/3D, ScanXmate-E090S40; Comscantecno, Kanagawa, Japan) under the following conditions: voltage, 60 kV; electric current, 85 µA; and voxel size, 37.5 µm. Three-dimensional reconstructions were created using commercial image reconstruction software (FanCT version 1.3; Comscantecnio). The 200-µm-thick transected tibial images were prepared at the location identical to

![Figure 1. Setting ROI surrounded by the white line. Six ROIs, including all areas of the cortical bone, are set in the cortical bone in the diaphysis of the tibia with the transected image (proton density-weighted image). Ant., Anterior; Lat., Lateral; Med., Medial; Post., Posterior.](image-url)
previous MRI images. The cortical BMD, mean cortical width, and marrow area were measured using commercial image analysis software (TRI/3D-BON; RATOC System Engineering, Tokyo, Japan).

Bone Histomorphometry

Preoperative tetracycline hydrochloride (Sigma-Aldrich, St. Louis, MO) was immediately administered dorsal subcutaneously to distinguish new cortical bone area. Forty specimens that were not decalcified were randomly selected at 2, 4, 8, and 12 weeks postoperatively. The specimens were stained with Villanueva bone stain, embedded in methyl methacrylate, and prepared at a location closely matched to that using the MRI.

The cortical bone histomorphometric characteristics were measured according to Parfitt's method (23) as follows: porosity area (Po. Ar), cortical area (Ct. Ar), and new bone area (New B. Ar). Pores were designated as the Po. Ar, except for osteocytic lacunae within cortical bone, and examined under natural light and 100× magnification. The Ct. Ar was measured at 200× magnification, as was the New B. Ar from cortical bone surface to tetracycline labeled under fluorescent light and 200× magnification. The secondary parameters, including Po. Ar/Ct. Ar (%), and New B. Ar/Ct. Ar (%), were calculated as a ratio to each measured cortical area.

Statistical Analyses

Measurements were expressed as the mean ± standard deviation. Two-way analysis of variance (ANOVA) was used to analyze BMD, μCT measurements (cortical BMD, cortical width, and marrow area), the SNRs for both groups during PDWI and SWIFT, and bone histomorphometry (Ct. Ar, Po. Ar/Ct. Ar, and New B. Ar/Ct. Ar) with group (sham or OVX) and postoperative week (2, 4, 8, or 12 weeks) as between-subject factors; Tukey’s post-hoc test was performed for multiple comparisons. Correlations between SNRs at SWIFT and cortical BMD or New B. Ar/Ct. Ar (%) were determined using Pearson’s correlation test. A value of P < 0.05 was considered statistically significant. Statistical analyses were conducted using SPSS (v. 21.0 for Windows; IBM, Chicago, IL).

RESULTS

MRI

The cortical bone SNRs within the OVX group were compared to the sham group under either PDWI or SWIFT (Fig. 2, 3). The difference of SNR between the sham and OVX groups receiving PDWI did not quite reach statistical significance (F(1,56) = 3.79, P = 0.057, 95% confidence interval for difference –0.579 to 0.008), although the SNR of the OVX-PDWI rats tended to be higher than that of the sham-PDWI rats (Fig. 3a). In rats imaged by SWIFT, the SNR in the OVX group was significantly higher than that in the sham group at 8 and 12 weeks postoperatively (P = 0.016 and P = 0.019, respectively) (Fig. 3b).

BMD Measurement

The tibial BMD was compared between the OVX and sham groups. BMD was lower in the OVX group than in the sham group at all points evaluated (F(1,56) = 26.77, P < 0.001) (Fig. 4a).

μCT Analyses

The cortical BMD was lower in the OVX than in the sham group at all points evaluated (F(1,56) = 14.74, P < 0.001) (Fig. 4b). The cortical BMD was positively, though weakly, correlated (R² = 0.066) with the cortical bone SNRs at SWIFT (P = 0.037) (Fig. 4c). The cortical width in OVX subjects was significantly thicker than that in sham subjects at 2 weeks postoperatively (P = 0.006) and significantly thinner than that in
sham subjects at 12 weeks postoperatively ($P = 0.012$) (Fig. 4d). The marrow area was significantly larger in OVX subjects than in sham subjects at only 12 weeks postoperatively ($P = 0.001$) (Fig. 4e).

Bone Histomorphometry

The Po. Ar increased in the OVX specimens, compared to the sham specimens under fluorescent light visually. The marrow area was enlarged and the cortical width reduced in the OVX group at 12 weeks postoperatively (Fig. 5a–h). Under fluorescent light, tetracycline labeling was present on the endosteal perimeter, particularly on the posterior to lateral margins and anterior to medial periosteal margins. The New B. Ar is shown in Fig. 5i. Cortical bone drifted toward the posterolateral side. The Ct. Ar did not differ significantly between the sham and OVX groups (Fig. 6a). The Po. Ar/Ct. Ar was larger in the OVX group than in the sham group at all weeks postoperatively ($F_{(1,32)} = 18.72, P < 0.001$) and decreased in a time-dependent manner in both groups ($F_{(3,32)} = 22.41, P < 0.001$) (Fig. 6b). The New B. Ar/Ct. Ar in OVX specimens was significantly smaller than that in sham specimens at 8 and 12 weeks postoperatively ($P = 0.004$ and $P = 0.022$, respectively) (Fig. 6c).

The New B. Ar/Ct. Ar was correlated significantly with the cortical bone SNRs at SWIFT ($P < 0.001$), and the relationship was strong, with a positive correlation coefficient ($R^2 = 0.430$) (Fig. 6d).

DISCUSSION

In OVX rats, bone turnover at the proximal tibia is reportedly faster than at the lumbar spine and proximal femur (24–26), and there is significant cancellous bone loss observed histologically in the proximal tibia at 2 weeks postoperatively (24). In this study, DEXA showed that beginning 2 weeks postoperatively, the tibial BMD decreased significantly in the OVX group compared to the sham group, which was consistent
with previous reports. However, DEXA measures BMD changes including both the cancellous and cortical bone and therefore distinguishing and measuring each individual component in small animals is difficult. In addition, DEXA enables only 2D projections and does not allow 3D assessments. Previous reports indicate that BMD measurement using DEXA alone does not allow the evaluation of potential fracture risks (27,28); bone quality and cortical bone must also be evaluated.

Previous reports using μCT revealed that the cortical BMD did not change as significantly as the cancellous bone during the early OVX postoperative period; several reports have actually shown a low cortical BMD (29,30). Samnegard et al (31) observed that in 3.5-month-old SD rats, the femoral diaphyseal BMD decreased significantly 11 weeks after OVX. Although the cortical bone BMD in this study did not differ markedly from previous reports, there were significant differences during the early postoperative period. Previous reports reveal differences in the bone turnover rates between the proximal and distal tibial regions in OVX rats (32). In our study, a slightly proximal location with a larger muscle mass was targeted to achieve improved MRI contrast, which may have influenced the present findings. The increased porosity area observed in the OVX group at each week postoperatively may have also influenced the findings. An enlarged marrow area and reduced cortical width have both been previously reported 3 months following OVX (29,33), which is consistent with our observations. The enlarged marrow area and decreased cortical width.
suggest that bone resorption was enhanced. The cortical bone began changing during the initial postoperative period, and bone resorption accelerated, particularly beyond 8 weeks postoperatively.

Du et al (17) measured signals from human tibial cortical bone using UTE imaging and reported that only 22.4% was derived from free water fraction, while 77.6% was derived from bound water fraction. This suggests that there is a little free water in the cortical bone. Du et al (17) showed that cortical bone signals obtained using PDWI detected mainly water signals with a millisecond T_2 component. In our study, the absence of any significant difference between the OVX and sham groups in the cortical bone SNR of PDWI suggested that the changes in the millisecond T_2 component were not considerable. The bound water in cortical bone has $\sim 12-\mu s$ T_2^* or $\sim 400-\mu s$ T_2 (16). The SWIFT technique can depict the free and bound water in cortical bone because the TE is set to a few microseconds (18). Horch et al (16) and Du et al (17) showed that cortical bone water is primarily composed of bound water. When the results for PDWI were also considered, the SNR findings based on the SWIFT technique suggested that bound water

![Tibial cortical bone histomorphometry](image)

Figure 6. Tibial cortical bone histomorphometry. Cortical area (Ct. Ar) (a), porosity area/cortical area (Po. Ar/Ct. Ar) (b), and new bone area/cortical area (New B. Ar/Ct. Ar) (c). Values are expressed as the mean ± standard deviation. a: $P < 0.001$, b: $P < 0.01$, and c: $P < 0.05$ vs. the sham group. The cortical bone SNRs of the SWIFT data correlate significantly with the New B. Ar/Ct. Ar ($P < 0.001$), and the relationship is strongly positive ($R^2 = 0.430$) (d).

<table>
<thead>
<tr>
<th>Item</th>
<th>Group</th>
<th>Week</th>
<th>Group × Week</th>
</tr>
</thead>
<tbody>
<tr>
<td>(MRI) Cortex bone SNRs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PDWI</td>
<td>0.057</td>
<td>0.082</td>
<td>0.998</td>
</tr>
<tr>
<td>SWIFT</td>
<td>0.001</td>
<td><0.001</td>
<td>0.041</td>
</tr>
<tr>
<td>(DEXA) BMD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><0.001</td>
<td><0.001</td>
<td>0.371</td>
</tr>
<tr>
<td>(CT) Cortical BMD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><0.001</td>
<td><0.001</td>
<td>0.523</td>
</tr>
<tr>
<td>(CT) Cortical width</td>
<td>0.682</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>Marrow area</td>
<td>0.145</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>(Histomorphometry)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ct. Ar</td>
<td>0.139</td>
<td><0.001</td>
<td>0.013</td>
</tr>
<tr>
<td>Po. Ar/Ct. Ar</td>
<td><0.001</td>
<td><0.001</td>
<td>0.496</td>
</tr>
<tr>
<td>New B. Ar/Ct. Ar</td>
<td><0.001</td>
<td><0.001</td>
<td>0.006</td>
</tr>
</tbody>
</table>

ANOVA, analysis of variance; MRI, magnetic resonance imaging; SNR, signal-to-noise ratio; PDWI, proton density-weighted image; SWIFT, sweep imaging with Fourier transform; DEXA, dual-energy X-ray absorptiometry; BMD, bone mineral density; µCT, microcomputed tomography; Ct. Ar, cortical area; Po. Ar, porosity area; New B. Ar, new bone area.
primarily increased in the cortical bone of the OVX rats, particularly at 8 and 12 weeks postoperatively.

Techawiboonwong et al (11) reported that the amount of human tibial cortical bone water in postmenopausal women was greater than in premenopausal women on UTE imaging because cortical bone porosity increases after menopause. The increased porosity area in OVX rats also supports an increase in cortical bone water content. However, the porosity area decreased with time in both sham and OVX rats, possibly because the SD rats were still growing. The SNR using the SWIFT technique increased with time while the porosity area decreased gradually, suggesting that bound water mainly increased.

The cortical BMD, as well as the SNR as determined using SWIFT data, exhibited only a weak positive correlation; therefore, the cortical bone SNR determined by SWIFT may reflect bone quality that cannot be assessed using BMD alone. The proportion of new bone was significantly greater at 8 and 12 weeks postoperatively in OVX rats, and the new bone area occupied over 50% of all the cortical area at 8 weeks postoperatively. New bone is believed to have high water content. The positive correlation between the new bone area and the cortical bone SNR detected using SWIFT potentially indicates that in OVX rats the early postoperative period is primarily characterized by the increased amount of bound water.

Among the limitations of this study, the specimens were small, and the cortical bone SI was low. Previous reports on SWIFT for bone tissue has only been used for ex vivo specimens (34,35); future establishment of imaging in subjects in vivo is desired. Second, when cortical bone thickness decreases, the influence of the partial volume effect increases, and this is likely to affect the measured SI. In this study, the ROI targeted the cortical bone midline to the greatest extent possible: in future studies, the procedure will need to be conducted in larger animals such as rabbits. Third, the study did not examine the differences between the cortical bone collagen in the OVX and sham groups.

The measurement of the SNR using the SWIFT technique could depict the early cortical bone qualitative changes associated with osteoporosis in humans. In recent years, zero echo time imaging with short and hard pulse excitation has been reported in humans (36). However, the RF power by hard pulse is much higher than by sweep pulse (37). The SWIFT technique may have clinical application because it has less RF peak power, a quiet sequence, and minimal invasion (18,34,37).

In conclusion, this study showed a greater SNR in the tibial cortical bone in OVX rats than in sham rats during the early postoperative period, as detected by MRI using the SWIFT technique. This may reflect a possible increase of bound water in the cortical bone and qualitative changes within the cortical bone in OVX rats. The results for our measurement of cortical bone SNR in OVX rats suggest that MRI using the SWIFT technique may depict early changes in cortical bone quality.

ACKNOWLEDGMENTS

The authors thank Ms. Akemi Ito, a bone histomorphometric specialist, and the staff at Ito Bone Histomorphometry Institute (Niigata, Japan) for their special support. The authors also thank Mr. Nobuhito Nango at RATO C System Engineering (Tokyo, Japan) for advice analyzing μCT and Dr. Yosuke Yamada at the National Institute of Health and Science for advice on statistical analysis.

REFERENCES